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Expressions are presented for evaluating errors in steady-state thermal flux 
measurements within massive objects with consideration of the effect of ther- 
mal conductivity and size of the active thermometer zone. 

Gradient-type thermometers [i], constructed in the form of a disk or plate of limited 
size and installed within the object to be studied, distort the preexisting temperature and 
thermal flux distributions within the body. The amount of this distortion and, consequent- 
ly, the error in the measurement of the steady-state thermal flux depend upon the ratio of 
the object's thermal conductivity to that of the thermometer and on the form and size of 
the thermometer. 

An estimate of errors in thermometer indications produced by these factors was offered 
in [2], which used a solution of the problem of the dielectric electric field in the form 
of an ellipsoid of revolution located in the homogeneous electric field of another dielec- 
tric. Since objections have been raised regarding the adequacy of replacing real thermome- 
ter constructions (disks, plates of limited size) by an oblate ellipsoid of revolution, the 
present study will formulate thermometer thermal conductivity in a new manner in order to 
obtain calculation expressions for estimating errors in steady-state thermal flux measure- 
ments within massive objects with consideration of the actual dimensions and parameters of 
the thermometer active zone. 

Let a gradient-type disk thermometer with radius R and thickness h, constructed of a 
material with thermal conductivity l T, be located within a massive object having a thermal 
conductivity %. The initial temperature field in the object t0(z) is one-dimensional and 
characterized by the value of the temperature gradient b. Because of the difference between 
% and %T in the zone where the thermometer is installed and the region adjacent thereto 
there are formed a new spatially inhomogeneous temperature distribution t(r, z) and thermal 
flux, symmetric about a plane which divides the thermometer into two halves each h/2 high 
(Fig. i). The thermometer volume bounded by the radius R e corresponds to the sensitive 
element. 

Thermometers used in practice have a radius R several times greater than the thickness 
(usually R/h > 5). With consideration of this the following assumptions can be made: I) 
the temperature perturbation in the upper part of the object (Fig. i) is formed by trans- 
port through the thermal resistance produced by a layer of material h/2 thick which has a 
thermal conductivity IT within the radial coordinate limits 0 ~ r ~ R and % at R < r < ~; 
2) heat transport in the radial direction is absent, i.e., the temperature field in the 
layer is linear in the coordinate z; 3) in light of the symmetry of the problem the lower 
plane of the layer (z = -h/2) has zero temperature, t(r, -h/2) = 0. 

The initial (undistorted) temperature distribution within the object 

The v a l u e  of  t h e  t e m p e r a t u r e  p e r t u r b a t i o n  O(r ,  z)  = t ( r ,  z) - t 0 ( z )  i s  found by s o l u -  
t i o n  o f  t he  Lap lace  e q u a t i o n  

02~ + 1 a~ + 02~ = 0 ( 2 )  
Or 2 r Or 8z z 
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Fig. i. Heat-exchange model: 
i) object; 2) thermometer. 

with boundary conditions 

(r, z ) t , -~  : o, ~ (r, z)l~.  = : o, ( 3 )  

5~.[b+----h-2 q(r, O)]a(r--R)=( O~).~z z=o-- h2 ~(r' 0)' (4) 

where 61 = (IT/X - I), and the symbol o(r - R) denotes the unit step function 

o(r--R)= { ]'0, O<r<R,r>R. (5) 
Taking the Hankel transform of Eq. (2) LH[O(r, z)] = 8(p, z), with consideration of 

conditions (3) we find 

0 (p, z) = A (p) exp (-- pz). (6) 

To determine the value of A(p) one can use the transformed boundary condition Eq. (4): 

[ 2 ] RJ~(pR)(dO) 20(p, O),O~r,~R, (7) 

in which the quantity %(r,, 0) which requires further definition is introduced using the 
mean value theorem for calculation of the integral 

i" tee (pr) ~ (r, O) a (r - -  R) dr = a9 (r,, O) RJi (pR) ( 8 )  
"o P 

Substituting Eq. (6) in Eq. (7), with consideration of Eq. (8) we find 

J1 (pe) 
A(p):--~[bR+k~%(r,, 0)] P (p+_~.._2) ' (9)  

where k = 2R/h. 

Taking the reverse }{ankel transform of Eq. (6) we obtain the desired equation for the 
value of the temperature perturbation 

(r, z) = - -  5~ [bR + ka9 (r , ,  0)] [ J1 (P2) JO (Pf) ex~ (-- pz) dp ( I0 ) 
J 0 P+-~ 

In real constructions the thermometer sensitive element occupies only a portion of 
the volume bounded by the radius R e . The annular portion of the thermometer (R e ~ r ~ R) 
plays the role of a "guard zone," reducing the edge effect caused by thermometer presence 
within the body. Then the total thermal flux Qe passing through the working portion of 
the thermometer with area S = ~Re 2 can be defined as 

< dr(r: z)~-o~ 2 = z ~ R ~  - , ( n )  O e = k ~ R ~ < t ( r , O ) > - f -  . dz  , _  

wherein we have the average over S of the temperature <t(r, 0)> or the temperature gradient 

dz z o 
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TABLE i. Values of Integrals r Pc) and r I) vs k and 

Pe 

m(h,Oe ) $(k,1) 
k ,o e 

0 I 0,1 [ 0,2 I 0,3 l 0,4 0,5 I 0,6 0,.7 I 0,8 t 0,9 1,0 

I 
4 0,221 0,222 0,223 0,227[0,231 
6 0,15610,157 0,158 0,161 0,164 

10 0,097 0,098 0,099[0,101 0,103 
20 0,050 0,050 0,050 0,051 0,053 
40 0,025 0,025 0,025 0,026 0,027 

0,237 0,246 
0,17010,177 
0,1071 0,112 
0,055 0,058 
0,028 0,029 

o 2 71o273] 
0,18710,201 0,223 
0,12010,131 0,150 
0,062 [0,069 0;082 
0,032 [ 0,035 0,043 

0,332 
0,262 
O, 189 
O, 116 
0,069 

As follows from Eq. (i) the undistorted (in the absence of the thermometer) value of 
the thermal flux Q0 through the same area is: 

Qo= FmR~ bh 2 _ X~R~ b. (12) 
2 h 

The relative error of the thermal flux measurement can then be defined as 

6(pO= Qe-QOQo = 6 x [  1-k'2-bh __6s+l~,~. <',@(p~>]. (13) 

The mean value of the temperature distortion <O(pe)> in the interval 0 <_ r <- R e can be 
found by solving Eq. (i0) in which the value of the quantity O(r,, 0) is determined by the 
condition of satisfaction of boundary condition (4) on the average over the area ~Re 2. 
Finally, we have 

where 

< @ (ge ) . )= - -bR6z  io dl(X)dl(pex)aXx (x + k) / i  [x+k(l+6~.)ldl(x)Jl(p~)dXx (x + k) , (14)  

where Pe = Re/R, 0 ~ Pe ~ i. 

Substituting Eq. (14) in Eq. (13), we obtain an expression for estimating the error 

l + 6 x I l - - r  9e)l ' ( i 5 )  

qs(k, P e ) : i  Jl(x)Jl(~x)dx /$ Jl(X) J~(Peg)dx 
o x + k  x 

If the thermometer sensitive element occupies the entire surface, i.e., 
then 6(pc) = 6(1) and 

r  1 ) = 2  ! 
x + k  

(16) 

Pe = Re/R = 1, 

(17) 

The numerical values of the integrals of Eqs. (16), (17) as functions of k and Pe were 
calculated on a computer (Table I) and then used to calculate relative error of thermometer 
readings with Eq. (15). 

Results of calculating the error 6(1) for the case where the thermometer sensitive ele- 
ment occupies the entire surface (Pc = i) are shown in Fig. 2. It is evident that the error 
increases severely as %T/X departs from unity and decreases with increase in k. The effect 
of the size of the thermometer sensitive element Pc, calculated with the expression 

A--  6(pg~ _ r  9~ 1 + 6 ~ [ 1 - - ~ ( k ,  1)] , (18) 
6(I) ~(k,  1) l + 6 x [ 1 - - ~ ( k ,  p~] 

f o r  t h e  v a l u e  k = 10 i s  shown in  F i g .  3. I t  i s  e v i d e n t  t h a t  d e c r e a s e  in  t h e  s i z e  o f  t h e  
s e n s i t i v e  e l e m e n t  from Pe = 1 t o  Pe = 0 .5  l e a d s  t o  a r e d u c t i o n  in  t h e  e r r o r  6 ( 0 . 5 )  as  com- 
p a r e d  to  6(1)  by 30-48% f o r  v a l u e s  o f  t h e  r a t i o  XT/~ = 0 . 2 - 1 0 .  In  t h e  l i m i t i n g  c a s e  XT/X = 
i in accordance with Eq. (15) independent of the sensitive element size Pe the error 6(pc) = 
O, since 6~ = 0. 
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Fig. 2. Error 6(1) of thermometer indication vs k for vari- 
ous values of ratio IT/I. 

Fig. 3. Effect of the size Pe of thermometer sensitive ele- 
ment on error for various values of IT/X at k ffi i0. 

TABLE 2. Ratio XT/X vs Geometric Factor k for a Num- 
ber of Error Levels 6(1) 

4 
6 

10 
2O 
40 

by Eq, (19) 
k @(1 ) 

4- 0,02 + 0 ,05  4- O;l -4- 0,2 

0,94...1,06 
0,93...1,08 
0,90...1,12 
0,85...1,20 
0,77..:1,40 

0,86...1,17 
0,83... 1,22 
0,78...1,34 
0,69...1,70 
0,57...3,23 

0,75..'1,38 
0,70...1,53 
0,63...1,93 
0,51...4,64 
0,38... 

0,57...2,01 
0,51...2,75 
0,43...8,58 
0,32 . . . .  
0,22 . . . . . .  

by data of [2] 

k 6(1 ) 

4- 0 ,02  4- 0 ,05 .-i: 0,1 ::kO,2 

4 
6 

10 
20 
40 

0,94... 1,07 
0 ,91 . . . I , i0  
0,87. . . I ,16 
0,78. . . i ,36 
0,65...2,06 

0,85...1,19 
0,80.. ,1,28 
0,73.. .I ,52 
0,58...2,82 
0,42... 0o 

0,73...1,44 
0,66...1,73 
0,56...2,88 
0,40... oo 
0,26 . . .  o~ 

0,541..2,29 
0,46...4,42 
0,36.. .  or 
0,23 . . . .  
0,13...oo 

For direct determination of the ratio IT/X from Eq. (15) we have the expression 

- - , (i9) 

which for specified values of measurement error 6(pe) and thermometer geometric factor k 
allows us to find the permissible divergence in the thermal conductivities of the object 

and thermometer l T. Results of calculating 6(1) with Eq. (19) and data determined on 
the basis of [2] are presented in Table 2. The allowable divergence of l T from I increases 
with increase in k and the allowable measurement uncertainty 8(1). Comparison of the data 
in Table 2 shows quite close agreement of the lower limits of the IT/X range and appreciable 
differences in the upper IT/X limits for large k. The symbol ~ denotes limiting values of 
the IT/I range not calculated with Eq. (19) or [2] in view of the approximateness of their 
der ivat ion. 
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Analysis of the results obtained shows that providing an accuracy at the level 6(1) 
0.05 for thermometer constructions used in practice with values k = 5-20 leads to quite 
severe restrictions on the thermal conductivity of the material used. 

The size of the zone in which the temperature is perturbed by the presence of the 
thermometer can be estimated with Eq. (i0). The expressions 

_ {' J~(x)  d x  , 

~(0, o) x + k  x + k  (20) 
0 0 

(0, z) ~ J l ( x )  exp - -  z / 
= ~ R J~ (x) dx 

~(0, O) J x + k  x + k  
0 0 

define the degree of damping of the perturbation in the directions r and z as compared to 
the maximum value %(0, 0). Results of computer analysis reveal that for k = 20 the value 
of the ratio %(0, z)/%(0, 0) for z/R = i, 2, i0 is 0.33, 0.15, 0.015, respectively. The 
size of the perturbed zone is significantly less in the radial direction: the value of 
%(r, 0)/%(0, 0) for k = 20 and r/R = i, 2, 3 is 0.49, 0.004, 0.001. 

Use of the relationships presented above permits a rational selection of thermometers 
for measurement of thermal flux in various media with consideration of the accuracy re- 
quired. 

NOTATION 

r, z, axial and radial coordinates; r,, r value for which mean value theorem is satis- 
fied; %, AT, thermal conductivities of object and thermometer, W/(m.K); R, h, thermometer 
radius and thickness, m; Re, radius of thermometer sensitive element, m; t, temperature, K; 
b, temperature gradient, K/m; %, temperature distortion, K; Q, thermal flux, W; 6, relative 
error in thermal flux measurement; p, Hankel transform parameter, m-l; J0, Jl, zeroth and 
first-order Bessel functions of the first sort. 

l, 

2. 
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